
I WHAT IS ENERGY?:

A. Energy:

1. The ability to do _____.

2. Work is done when a _____ causes an object to _____

in the _____ of the force.

3. When one object does _____ on another, _____ is _____

from the 1st object to the 2nd object.

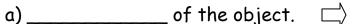
B. <u>Kinetic Energy</u>:

1. The energy of ______.

2. All _____ objects have kinetic energy.

3. Kinetic energy depends on _____ and ____

a) The _____ something is moving,


the ____kinetic energy it has.

b) The _____ the mass of a _____

object, the _____its kinetic energy.

C. Potential Energy:

1. This is _____ energy due to

D. Mechanical Energy:

1. Both _____ energy & ____ energy are

kinds of mechanical energy.

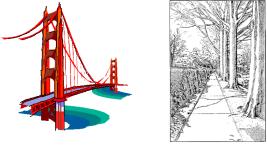
III TEMPERATURE:

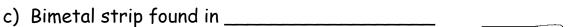
A .	Wł	<u>'hat is it?</u>	
	1.	Temperature is the of the average	
		energy of the in an object.	9 0
	2.	. All is made up of	
		or that are always	
		they have energy.	
	3.	. The kinetic energy the	of an object
		have, the the	of the object.
В.		Average Kinetic Energy: Particles in an object move atsp	eeds.
	2.	. The kinetic energy of	_ the
		particles is the object's	
	3.	. Temperature depends on the kinetic	1 (4)
		energy, NOT of it you have.	
	4.	. There istea in the tea kettle, but	
		the of the tea in the	_
		is the as the temperature in the	
C.	Me	<u>leasuring Temperature</u> :	
50 1-120 40 -100 30 -100		1. When objects are heated, their	move
50 139 40 100 30 80 10 40 0 20 20 0 30 70		out.	
		2. Thermal is the increase in	
		of a substance because of an increase in	·
	3.	Thermometers use the <i>liquids</i> or _	
	ا	because they by	amounts.

4.	Tampanatu	na Scalaci
4.	Temperatu	re ocules.

a) Fahrenheit - Freezing:_____ Boiling:____

Boiling:____ b) *Celsius* - Freezing:

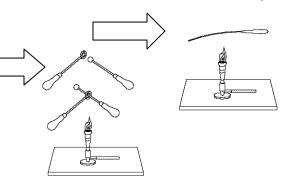

c) Kelvin* - Freezing: _____ Boiling: ____


* 0° K is _____ zero (-459°F), all _____

stops. This is _____ possible, but we have been _____

D. Thermal Expansion:

- 1. In solids:
 - a) Expansion joints on _____
 - b) Cracks in _____



have ____ and ____

d) Ball and ring demo

2. In gases:

a) _____ balloons.

IV HEAT:

A. Thermal energy:

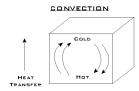
1. The _____ kinetic energy of the particles in the object.

2. Measured in _____.

3. The amount of thermal energy depends on two

a) the _____ of the object.

b) the _____ of the object.



things:

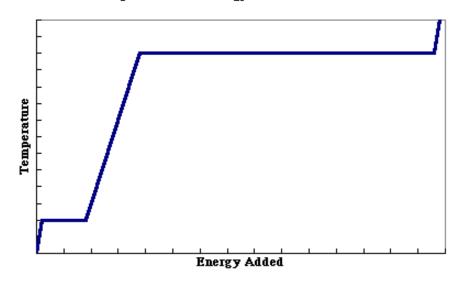
	thermal energy	than a		
	of 80 ° water.			
a		-		_
		Topic 7	Page	<u>2 5</u>
V HEAT TRA	NSFER:			
A. <u>Conducti</u>	on:			
1. The t	ransfer of	energy from	substance to	
		through	contact.	
2. It ca	n also occur	a substance	e, like a	_
3. Energ	gy is transferred w	vhen particles	·	
4. Cond	<i>uctors:</i> transfer he	eat energy very	·	
a) _		are good conductors o	f heat.	
		conduct heat ene		
			<i>3</i> ,	
B. Convection	•			_
		nergy by the	of	
			01	
		r a	A Al	
		om one	то anotner.	
3. When	n you boil water in	a pot, the		
a) wo	ater on the bottom	n gets hot by means		
C	of	·		001
b) w	ater becomes less	&	_ \ <u>`</u>	$\cup\cup/$
c) at	the surface, the v	water begins to		
d) th	ne cooler water is r	more &	·	
4 The	circular mation of I	liquids or gases due to	these density diffe	erences

4. A _____ full of 80° water has _____

is called a	·
-------------	---

Chapter 10	Topic 7	Page 6
5. Convection heats yo	our room	Warm air
a) warm air is less	sso its	
b) cool air is more	zso it	
6. Large scale convect	tion currents:	cool air
a)		
b)		
C. <u>Radiation:</u>		
1. The transfer of ener	rgy by electromagnetic wa	aves such as
	and	waves.
2. It occurs	matter.	
3. Greenhouse Effect:		
a) Visible light passe	sglass	s and gets
b) Then it turns into	o energy. (Inf	rared energy)
c) Heat is	by the glass.	
d) Our atmosphere	also ho	eat energywith
its		and
	Incoming solar radiation	

Infared radiation


4	surfaces	radiation.
a) E×ample:		
<u>Chapter 10</u>	Topic 7	Page 7
D. <u>Thermos</u> : What type	e of heat transfer does eacl	n feature stop?
1) Airtight stopper:		
2) Foam insulation:		
3) Trapped air space:	&	
4) <i>Shiny</i> stainless steel	bottle:	
5) Plastic cap:	&	
6) Plastic outside:		
7) Stainless steel vacuu	<i>m</i> bottle:	&

VII HEAT AND CHANGES OF STATE:

A. States of Matter:

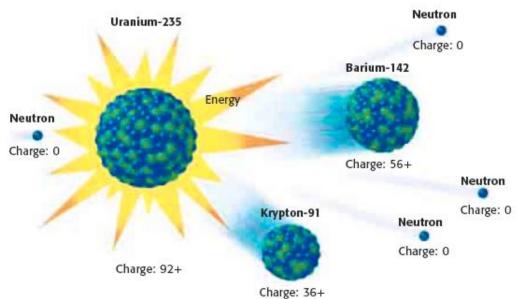
- 1. The state of a substance depends on:
 - a) the _____ of its particles
 - b) the _____ between them
 - c) the _____ around them.
- 2. A _____ has more _____ energy than a _____.
- 3. It takes _____ to break the _____ between particles.
- B. Changes of State Graph:

Temperature vs Energy Added for Water

- 1. As the _____ is heated, its temperature goes from _____ to ____
- 2. As the ice _____, the temperature remains at _____
- 3. The temperature of the _____ remains the ____ until all of the

_____ becomes ____ water.

4. The water's	then increases	from to
5. At	, the water begins to chan	nge to
6. When all the	becomes,	, the temperature
<u>Chapter 10</u>	Topic 7	Page 9
C. Heat of Fusion:		Temperature vs Energy Added for Water
1. The	needed to the	
forces of a	so it	- aperature
2. It takes	Joules of energy to	
one	e gram of ice.	Energy Added
3 1 cham of ico	1	nam of water
 1 gram of ice 0°C 	_	ram of water D ^o C
0 0		
4. All the	goes into	the
forces. The tem	perature does go	o up.
D. <u>Heat of Vaporization</u>	<u>on</u> :	
1. The	needed to	Temperature vs Energy Added for Water
	of aso it can	20
	·	Temperature
2. At, one	e gram of water absorbs	
joule	s of energy to become a	Energy Added
3. 1 gram of water	_	am of steam
100° <i>C</i>	10	0° <i>C</i>
4. All the	(J) goes in	nto


<u>Chapter 16</u>		TOPIC 7	Page 10	
I RADIOACTIVITY:				
A. Nuclear Radiation:				
 High-energy 	and	that are		
by t	he	of some atoms.	Radioactivity	
2. Radioactivity: the		by which some nucl	100	
give off	radiation.			
3. All elements above	the atomic num	nber of are	radioactive.	
B. Radioactive or Stable	2			
1. Stable atoms: Nun	nber of	= Number	of	
7	Atomic	Protons:		
14. 00 <	Atomic	Protons: Neutrons:		
2. Radioactive Atoms	(Unstable)			
a) More	than	(if atomic	mass is large)	
85	protons	•	protons	
210 —	neutrons	U 238 — n	eutrons	
C. <u>Isotopes</u> : (see pages	321 323 for m			
1. Atoms of the	,		e the same	1: ((
	and a		ron 🕒 Proton ron () Nucleus	differen
omic				
2. Example:		$\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) \left(\begin{array}{c} \bullet \end{array}\right)$	(\mathfrak{S}_{1})	
1 1	1 u	Hydrogen De	euterium Tritium	

Hydrogen l	Deuterium T	ritium		
3. Many	isotopes	are		
<u>Chapter 16</u>		TOPIC 7		Page 11
4. Naming isoto	pes:			
a) Write the	name of the			NUCLEUS
followed I	oy a	_ and the	#.	NEUTRONS PROTONS (143 or 146) (92)
b) U-238	U-235			ELECTRÓN (92 of these)
III PENETRATING	POWER OF RA	ADIATION:		(72 of mesey
A. Three types of 1	radiation:			
1. Alpha partic	les can be stopp	oed with	or	
2. Beta partic	les can be stopp	oed with	fo	oil.
3. Gamma par	ticles can be sto	opped with 3	of cor	ncrete.
	Paper	Beta particles Aluminum	Gamma rays Concrete	
	a particles have a greater ge and mass than beta	▲ Beta particles have a 1− or 1+ charge and almost no	▲ Gamma rays have r or mass and are the	
parti Alph 7 cm	cles and gamma rays do. a particles travel about n through air and are ped by paper or clothing.	mass. They are more penetrat- ing than alpha particles. Beta particles travel about 1 m through air but are stopped by 3 mm of aluminum.	penetrating. They are by very dense, thick such as a few centing lead or a few meter concrete.	e blocked materials, meters of
B. <u>Damage to Li</u>	ving Matter:	•		
1. Radiation d	lamages	and	cause	·

2. Radiation sickness causes the following symptoms:

b) Also destruction of	and					
3. Exposure to radiation can also increase the risk of						
4. Radon testing in your home:						
a) Radioactive radon-222 forms from decay of						
b) It is a and can get into your house.						
Chapter 16 TOPIC 7	Page 12					
IV <u>USES OF RADIOACTIVITY</u> :						
A. Medicine:						
1. Tracers are injected andfollow them t	through the body.					
2. Can illnesses including						
3. Can healthcare products.	100					
B. <u>Industry</u> :						
1. Can defects in	3800 CQ Ristriction					
structures.	Half-Life Graph					
C. <u>Geiger Counter</u> :						
1 when there is radiation. D. Radioactive Dating:	50					
D. Radioactive Dating:	12.5 6.25 3.125					
1. Radioactive decay occurs at a	5 10 15 20 25					
rate.	Time (days)					
2. Decay is, it never speeds up or slows d	lown.					
3. Half-life:						
a) The time it takes for of the radioactive	substance to					
b) Half-lives range in time from to _						
c) Example: Substance X has a half-life of 20 years	S					
X						
d) Determining age: Compare the radioactive substa	ance with what					

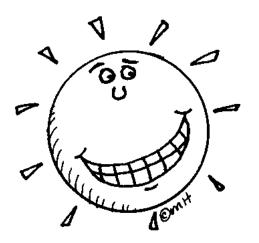
i†	decays into.		
e) Atomic "Clocks":			
Carbon- 14:		(good up to	50,000 years)
Potassium-40:		(most comm	nonly used)
Uranium-238:		(determined	Earth's age)
Chapter 16	TOPI	<i>C</i> 7	Page 13
V NUCLEAR FISSION:			
A. What is it?			
1. When a	_ nucleus	into	_
nucle	i and release	es	
2. Some uranium atoms		_ naturally, others car	1 be
to spli	it by hitting	the nucleus with a	··
Uranium-23	5	Neutron Charge: 0	

2, 11,112,1 2 = 2 2 p.1.12 p.1.12 p.1.11	3.	When	U-235	splits	you get	the followin	9
--	----	------	-------	--------	---------	--------------	---

١.٥	,	•
a) 2 new	()
	\	

- b) 3 _____
- c) Radiation (_____)
- d) Less mass...it is converted into _____
- 4. One fuel _____ of uranium, can release as much _____

as the		nge of burning	kg of coal.				
	G	13.2 USA	Car 1870s Bulk Rate				
Chapter 16	TOPI	<u>:C 7</u>	Page 14				
B. <u>Nuclear Chain Re</u>	eactions:						
1. A	56	eries of nuclear	reactions.				
	U-235 Ba-141 n Kr-92 n	$\begin{array}{c} U-235 & Ba-141 & n \\ & & & \\ & $	© Jim Doyle 2000				
2. Controlled chain reaction:							
a) Uranium is within a nuclear							
b) Neutrons	can be	to	the reaction.				
3. Uncontrolled a) off very q	amounts of _	are given					
h) An atomic							


C. Advantages and Disadvantages of Nuclear Fission:1. Advantages of nuclear fission:

a) No _____

b) Costs _____ to run.

c) Saves on ______

2. Disadvantage	es of nuclear fission	:		
a) Waste is ₋		_, no place to	it.	
b) Costs	to build	d.		
c) Possible _	, that might releas		e	
Chapter 16	TO	OPIC 7	Page 15	
combine , or	ON: or more to fo	rm a larger		
b) Save on _ c) Unlimited which is for 3. Disadvantage	pollution. No r fuels. , l ound in	because the fuel is 		
•	ible to do yet.	.((

